На правах рукописи

Эфендиев Канамат Темботович

СПЕКТРОСКОПИЧЕСКАЯ ИНТРАОПЕРАЦИОННАЯ ДИАГНОСТИКА В ПРОЦЕССЕ ЛАЗЕРНОГО ОБЛУЧЕНИЯ

Специальность: 1.3.19. Лазерная физика

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата физико-математических наук

Москва - 2023

Работа выполнена в Федеральном государственном бюджетном учреждении науки Федеральном исследовательском центре «Институт общей физики им. А.М. Прохорова Российской академии наук» (ИОФ РАН)

Научный руководитель:

<u>Лощенов Виктор Борисович</u>, д.ф.-м.н., проф., заведующий лабораторией лазерной биоспектроскопии Центра естественно-научных исследований ИОФ РАН.

Официальные оппоненты:

<u>Олейников Владимир Александрович</u>, д.ф.-м.н., заведующий лабораторией молекулярной биофизики Института биоорганической химии имени академиков М.М. Шемякина и Ю.А. Овчинникова РАН.

Васютинский Олег Святославович, д.ф.-м.н., проф., член-корр. РАЕН, главный научный сотрудник Физико-технического института имени А. Ф. Иоффе РАН.

Ведущая организация:

Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук.

Защита диссертации состоится 26 сентября 2023 г. на заседании диссертационного совета 24.1.223.02 при ИОФ РАН по адресу: 119991, Москва, ул. Вавилова, д.38, корп. 1.

С диссертацией можно ознакомиться в библиотеке и на сайте ИОФ РАН https://diss.gpi.ru/all/.

Автореферат разослан «___» ____ 2023 г.

Ученый секретарь диссертационного совета 24.1.223.02 канд. физ.-мат. наук тел.: +7 (499) 503-8777 доб. 1-47

Love

Т.Б. Воляк

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ Актуальность

Разработанные в последние годы новые подходы к диагностике и лечению опухолей методами флуоресцентной диагностики (ФД) и фотодинамической терапии (ФДТ) демонстрируют высокую эффективность. ФДТ не имеет тяжелых побочных эффектов, а малоинвазивный характер с избирательным противоопухолевым эффектом минимизирует необратимые повреждения окружающих нормальных тканей и сохраняет функции органов. Эффективность ФДТ зависит от концентрации фотосенсибилизатора (ФС) и молекулярного кислорода, которые неоднородно распределены в биологических тканях, а также от интенсивности лазерного воздействия. Вследствие большой гетерогенности опухолей внутритканевое распределение ФС и молекулярного кислорода может меняться в процессе лазерного облучения [1], что создает трудности для широкого клинического применения ФДТ, связанные техническими сложностями интраоперационной с диагностики распределения ФС и оценкой достаточности лазерного воздействия. Таким образом, необходимость В разработке методов, которые бы имеется позволили интраоперационно контролировать изменения в распределениях ФС и кислорода непосредственно в процессе лазерного облучения.

Спектроскопическая диагностика, частью которой является флуоресцентная навигация, обеспечивает оценку распределения ФС в биологических тканях и контроль изменения интенсивности его флуоресценции [А1]. Флуоресцентная навигация может проводиться спектрально- или видео-флуоресцентными методами. Чаще всего интраоперационный процесс ФДТ контролируется методами ФД только до и после фотодинамического воздействия. Основным недостатком данного подхода является необходимость использования отдельных источников света для диагностики и терапии, а также отсутствие информации о процессах, запускаемых в начале лазерного облучения. В процессе спектроскопической диагностики нами было предложено контролировать четыре важных параметра, характеризующих состояние облучаемой биологической ткани. содержащей ΦC : динамику изменения интенсивности флуоресценции ФС, которая напрямую связана с его концентрацией; спектр диффузно отраженного широкополосного света, позволяющий оценить поглощение и, соответственно, изменение уровня оксигенации гемоглобина, а также уровень кровенаполненности микроциркуляторного русла; динамику изменения диффузно рассеянного лазерного излучения, характеризующего интенсивности рассеивающие и поглощающие свойства облучаемых биологических тканей. Непрерывный спектроскопический контроль позволяет оценить скорости протекания данных процессов, запускаемых при ФДТ.

Достаточно часто при регистрации флуоресценции ФС в реальных биологических тканях наблюдается значительный вклад эндогенных порфиринов,

которые имеют характерные полосы поглощения и флуоресценции в диапазоне длин волн 280-700 нм [2]. Решением данной проблемы может быть регистрация флуоресценции ФС в ближнем инфракрасном (БИК) диапазоне, что позволяет минимизировать вклад эндогенной флуоресценции тканей, а также выявлять более глубокозалегающие сенсибилизированные очаги [3]. В данной работе предложен метод интраоперационной спектроскопической диагностики с применением протопорфирина IX (Protoporphyrin IX, PpIX) и хлорина еб (Chlorin e6, Ce6) с регистрацией длинноволнового плеча флуоресценции В БИК-диапазоне И возбуждением флуоресценции ФС в красном диапазоне длин волн [A2]. В отличие от существующих, данный метод включает применение только одного источника лазерного излучения как для ФД, так и для ФДТ (фототераностики) [П1, П2]. Предложенный метод обеспечивает контроль в процессе лазерного облучения изменений интенсивностей флуоресценции ФС в диапазоне длин волн 725-800 нм и диффузно рассеянного лазерного излучения [ПЗ].

Разработка дозиметрического метода оценки эффективности ФДТ осложняется из-за динамических изменений микроциркуляции крови, насыщенности гемоглобина кислородом и распределения ФС по объему опухоли. Ранее [4] был предложен метод спектроскопического анализа биологических тканей, включающий одновременную оценку оксигенации гемоглобина, накопления PpIX и изменения рассеивающих свойств тканей. Однако данный метод не позволяет проводить контроль ФДТ непосредственно в процессе лазерного облучения и подразумевает использование отдельного источника лазерного излучения для ФД. На основе ранее предложенных методов [4,5] нами был разработан спектроскопический метод комбинированного контроля эффективности ФДТ, обеспечивающий одновременную оценку уровня оксигенации гемоглобина в микроциркуляторном русле, уровня кровенаполненности, изменения интенсивности флуоресценции ФС в БИК-диапазоне и изменения интенсивности диффузно рассеянного лазерного излучения за счет регистрации спектроскопических сигналов с экспозицией 20-50 мс и временным интервалом регистрации спектров 3-5 с непосредственно в процессе лазерного облучения с применением одного источника лазерного излучения, который одновременно используется для ФД и ФДТ. Предложенный метод позволяет оптимизировать энергетические параметры лазерного воздействия на разные зоны биологических тканей с учетом их гетерогенности за счет возможности контроля изменения внутритканевого распределения ФС и состояния сосудистой системы опухоли в процессе лазерно-индуцированной ФДТ.

Целью данной работы являлась разработка спектроскопических методов и устройств контроля процесса воздействия лазерного излучения на биологические ткани, содержащие ФС, позволяющих оценить изменения в распределении ФС и уровня насыщенности гемоглобина крови кислородом, а также состояние сосудистой системы тканей для оценки эффективности фотодинамического воздействия в режиме реального времени.

Для достижения поставленной цели требовалось решить следующие задачи:

1. Разработать метод флуоресцентной навигации в БИК-диапазоне и оценки распределения ФС в гетерогенных биологических тканях при помощи регистрации длинноволнового плеча флуоресценции Себ и РрІХ непосредственно в процессе лазерно-индуцированного фотодинамического воздействия.

2. Разработать метод спектроскопического комбинированного контроля ФДТ в процессе лазерного облучения, включающий оценку уровня оксигенации гемоглобина, интенсивности флуоресценции ФС и диффузно рассеянного лазерного излучения.

3. Разработать устройство с волоконно-оптическим способом доставки лазерного излучения для инфракрасной (ИК) визуализации кровеносных сосудов и оценки кровенаполненности биологических тканей методом регистрации и анализа обратно рассеянного лазерного излучения. Уточнить оптимальные длины волн в БИКдиапазоне для визуализации кровеносных сосудов в коже человека методом регистрации обратно рассеянного лазерного излучения.

4. Методами флуоресцентной навигации исследовать изменения внутритканевого распределения Себ в центральной зоне и периферии/границе опухоли в процессе лазерного облучения.

Научная новизна

1. Разработан метод спектроскопической диагностики возбуждением c флуоресценции Себ и PpIX в красном диапазоне и регистрацией длинноволнового плеча флуоресценции в диапазоне длин волн 725-800 нм, который позволяет в времени регистрировать спектроскопические сигналы с режиме реального экспозицией 20-50 мс и временным интервалом регистрации спектров 3-5 с, что обеспечивает контроль изменения интенсивностей флуоресценции ФС и диффузно рассеянного лазерного излучения в процессе лазерно-индуцированной ФДТ.

2. Разработан метод спектроскопического контроля лазерно-индуцированного фотодинамического воздействия в режиме реального времени непосредственно в процессе лазерного облучения с комбинированной оценкой изменения уровня оксигенации гемоглобина, флуоресценции ФС и диффузно рассеянного лазерного излучения, характеризующего оптические свойства биологических тканей.

3. Разработано устройство с волоконно-оптическим способом доставки лазерного излучения, обеспечивающее визуализацию подкожных вен и оценку кровенаполненности биологических тканей методом регистрации и анализа обратно рассеянного лазерного излучения. Установлено, что наибольшая контрастность вен при визуализации методом регистрации диффузно рассеянного лазерного излучения в диапазоне 700–860 нм наблюдается на длине волны 760 нм.

4. Разработан и реализован в клинической практике метод предварительного низкоинтенсивного лазерного облучения опухоли с плотностью энергии 10–20 Дж/см² и плотностью мощности на поверхности 130–310 мВт/см² до основного облучения, который увеличивает медианную концентрацию Себ в опухолях кожи в 1,3 раза, что повышает эффективность фотодинамического воздействия.

Научно-практическая значимость работы

1. На базе разработанных методов и устройств созданы объекты интеллектуальной собственности, защищенные патентами РФ в количестве 4 шт [П1–П4].

2. Регистрация флуоресценции Себ и РрІХ в БИК-диапазоне позволяет проводить спектроскопическую диагностику глубокозалегающих злокачественных новообразований, а также улучшает специфичность обнаружения экзогенной флуоресценции ФС, минимизируя вклад эндогенных флуорофоров в регистрируемый сигнал. Применение одного источника лазерного излучения, который одновременно используется для ФД и ФДТ (фототераностики), позволило сократить время проведения процедуры лечения опухолей с применением Себ и РрІХ. Данные подходы успешно реализованы в клинической практике при интраоперационной фототераностике опухолей.

3. Спектроскопический комбинированный метод определения оптимальных энергетических параметров ФДТ непосредственно в процессе лазерного облучения по изменению интенсивности флуоресценции ФС, оксигенации гемоглобина и интенсивности диффузно рассеянного лазерного излучения, которые характеризуют состояние сосудистой системы в зоне облучения, внедрен в клиническую практику при лечении опухолей. Метод позволяет персонализировать время лазерного воздействия на биологические ткани при ФДТ.

4. Разработанное устройство с волоконно-оптическим способом доставки лазерного излучения позволяет проводить ИК-визуализацию подкожных вен человека. Устройство обеспечивает интраоперационный контроль состояния сосудистой системы при лазерном облучении биологических тканей, накопивших ФС.

5. Метод предварительного низкоинтенсивного лазерного облучения позволяет локально увеличить концентрацию Себ в опухоли, что позволяет повысить эффективность фотодинамического воздействия и сократить количество проводимых процедур ФДТ.

Разработанные методы и устройства реализованы в клинической практике и были применены в стандартных процедурах ФД и ФДТ для более чем 350 пациентов с опухолями кожи, головы и шеи, холангиоцеллюлярным раком и раком шейки матки, выполненных совместно с Институтом кластерной онкологии им. Л.Л. Левшина Первого МГМУ им. И.М. Сеченова.

Положения, выносимые на защиту

1. Спектроскопическая диагностика с возбуждением флуоресценции Себ и РрХ в красном диапазоне длин волн и регистрацией длинноволнового плеча флуоресценции ФС в БИК-диапазоне позволяет оценить распределение ФС в биологических тканях в процессе лазерно-индуцированного фотодинамического воздействия.

2. Метод спектроскопического комбинированного контроля обеспечивает одновременную регистрацию изменений насыщенности гемоглобина кислородом и уровня кровенаполненности биологических тканей в диапазоне 500–600 нм, процесса

тромбирования сосудистой системы облучаемых тканей за счет регистрации диффузно рассеянного лазерного излучения в диапазоне 650–670 нм и флуоресценции ФС в диапазоне 725–800 нм непосредственно в процессе лазерного облучения.

3. ИК-визуализация кровеносных сосудов методом регистрации и анализа обратно рассеянного лазерного излучения с волоконно-оптическим способом доставки позволяет неинвазивно визуализировать подкожные вены и оценить изменения уровня кровенаполненности биологических тканей при лазерном облучении.

4. Предварительное низкоинтенсивное лазерное облучение опухолей кожи с внутривенным введением ФС на основе Себ лазерным излучением (λ=660±5 нм) с плотностью мощности на поверхности 130–310 мВт/см² и плотностью энергии 10–20 Дж/см² увеличивает концентрацию Себ в зоне облучения.

Публикации и апробация работы

По результатам исследований опубликовано 24 статьи в рецензируемых журналах, удовлетворяющих требованиям ВАК, из них в журналах с первым квартилем опубликовано 6 статей, со вторым квартилем 13 статей, с третьим квартилем 3 статьи, с четвертым квартилем 1 статья, а также 15 тезисов на научных конференциях. На основе разработанных методов созданы объекты интеллектуальной собственности, защищенные 4-мя патентами РФ.

Структура и объем диссертации

Работа состоит из введения, пяти глав, заключения и списка литературы. Общий объем диссертации 158 страниц, включая 81 рисунок, 4 таблицы и список литературы из 195 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во Введении обоснована актуальность темы исследования, сформулированы цель и основные задачи работы, изложены основные положения, выносимые на защиту, отмечена научная новизна, достоверность и научно-практическая значимость полученных результатов.

Первая глава посвящена рассмотрению особенностей распространения света в биологических тканях, которые обладают высоким уровнем гетерогенности. В § 1 для описания оптических свойств биологических тканей вводятся понятия коэффициента поглощения, коэффициента рассеяния И фактора анизотропии рассеяния биологической среды. Коэффициент поглощения μ_a вводится в законе Бугера-Ламберта-Бэра и определяется как сумма вкладов всех хромофоров сложной гетерогенной среды $\mu_a(\lambda) = \sum_i (\epsilon_i(\lambda)) C_i$, где $\epsilon_i(\lambda)$ – коэффициент экстинкции, C_i – концентрация *i*-го флуорофора. В § 2 рассмотрены механизмы ФД и ФДТ, описаны три основных этапа процесса ФДТ опухоли. Особое внимание уделяется факторам, влияющим на эффективность ФДТ: концентрации ФС и кислорода, а также изменениям в сосудистой системе опухоли. В § 3 рассмотрены процессы

фотобличинга (фотообесцвечивания) ФС. В процессе ФДТ с молекулой ФС могут происходить фотохимические изменения, которые способствуют либо временной потере флуоресценции, либо деструкции и необратимой потере флуоресцентных свойств. В § 4 рассмотрены основные механизмы действия ФДТ на опухоль: прямая гибель клеток опухоли по пути апоптоза или некроза; разрушение сосудистой системы опухоли; запуск противоопухолевых иммунологических механизмов организма. В § 5 особое внимание уделено влиянию ФДТ на сосудистую систему опухоли. При ФДТ в зоне лазерного облучения может наблюдаться локальная гипоксия как из-за прямого фотохимического потребления кислорода за счет образования синглетного кислорода ${}^{1}O_{2}$, так и непрямого сужения.

Вторая глава посвящена рассмотрению материалов и методов исследования. Описаны устройства и принципы работы оборудования, а также экспериментальные модели биологических тканей (оптических фантомов), которые использовались при проведении исследований. В § 1 приведены спектрально-флуоресцентные свойства Себ и РрІХ. Флуоресценция Себ и РрІХ наиболее часто возбуждается в полосе Соре (в области 400–405 нм) и регистрируется в диапазоне длин волн 620–720 нм. Себ и РрІХ также имеют максимумы поглощения на длинах волн 635 и 660 нм соответственно. Однако интенсивности поглощения Себ и РрІХ в красноволновой Qполосе в несколько раз меньше, чем в полосе Соре, что уменьшает интенсивность возбуждаемой флуоресценции ФС.

В §2 и 3 описаны установки для спектрально- и видео-флуоресцентной навигации распределения ФС в биологических тканях. Спектроскопические измерения проводились с использованием установки ЛЭСА-01-БИОСПЕК, которая может регистрировать сигнал в спектральном диапазоне от 350 до 1000 нм. Флуоресцентные изображения регистрировались с использованием двухканальной видеосистемы УФФ-630/675-01-БИОСПЕК, которая обеспечивает визуализацию сенсибилизированных биологических тканей с отображением флуоресцирующих очагов на длинах волн более 650 нм. В § 4 описана схема подготовки оптических фантомов на основе жировой эмульсии (Intralipid 10% MCT/LCT), содержащих ФС, для концентрационной оценки распределения ФС в биологических тканях и исследования процессов фотобличинга ФС. В § 5 и 6 описаны методы оценки накопления ФС и уровня оксигенации гемоглобина при помощи спектроскопии обратного диффузного отражения света. В § 7 описывается общая схема численного моделирования распространения фотонов в трехслойной модели кожи человека методом Монте-Карло. В § 8 описывается метод микроскопической оценки распределение Себ в опухоли с помощью сканирующей конфокальной микроскопии.

Третья глава посвящена разработке метода спектроскопической оценки критериев эффективности фототераностики в БИК-диапазоне с применением Себ и PpIX [A2]. В первом параграфе представлен метод флуоресцентной навигации

распределения ФС в диапазоне длин волн 725–800 нм, включающий проведение спектроскопической диагностики, не прерывая фотодинамического воздействия, источниками лазерного излучения с длинами волн 635±5 и 660±5 нм [ПЗ]. На Рис. 1 представлены характерные результаты спектроскопической диагностики оптических фантомов, содержащих PpIX и Ce6, с регистрацией флуоресценции ФС в красном (665–710 нм) в БИК (725–800 нм) диапазонах.

Рис. 1. Спектроскопическая диагностика оптических фантомов с регистрацией флуоресценции ФС в красном и БИК-диапазонах: (а) фантом с PpIX; (б) фантом с Себ. Концентрация ФС 2 мг/кг.

Спектроскопическая диагностика оптических фантомов, содержащих PpIX и Ce6 в концентрациях 0,1; 0,25; 0,5; 1; 2; 5 мг/кг, позволила зарегистрировать интенсивную флуоресценцию ФС в диапазоне длин волн 725–800 нм. Наибольшее значение «сигнал/шум» в случае фантомов с PpIX наблюдалось при λ_{exc} =635 нм, а в случае фантомов с Ce6 при λ_{exc} = 660 нм и составляло 25±3 и 308±31 соответственно.

В § 2 анализируются преимущества флуоресцентной навигации в БИКдиапазоне. Диапазон длин волн 700–900 нм является наиболее оптимальным за счет большей глубины проникновения света и минимального вклада эндогенной флуоресценции в сравнении с диапазоном 400–700 нм.

В § 3 показано, что регистрация флуоресценции PpIX и Ce6 в БИК-диапазоне обеспечивает контроль фотобличинга ФС непосредственно в процессе лазерного облучения (Puc. 2).

Индексы флуоресценции *IF* рассчитывались как отношение интегральной интенсивности под спектральной кривой флуоресценции $I_f(\lambda)$ к интегральной интенсивности под спектральной кривой диффузно рассеянного лазерного излучения:

$$IF_{\lambda_{exc}=635\text{HM}} = \int_{725}^{800} I_f(\lambda) d\lambda / \int_{625}^{645} I_{bs}(\lambda) d\lambda,$$

$$IF_{\lambda_{exc}=660\text{HM}} = \int_{725}^{800} I_f(\lambda) d\lambda / \int_{650}^{670} I_{bs}(\lambda) d\lambda.$$
(1)

Фотобличинг ФС был аппроксимирован экспоненциальной функцией:

$$IF(t) = A \cdot e^{\frac{t}{\tau}} + \text{const} = A \cdot e^{-kt} + \text{const},$$
(2)

где IF(t) – индексы флуоресценции в процессе облучения; A – коэффициент аппроксимации; t – время облучения; $k = 1/\tau$ – скорость фотобличинга ФС.

Puc. 2. Спектроскопическая диагностика в процессе лазерного облучения: (a) спектры фантома с *PpIX*, C_{PpIX}=2 мг/кг; (б) спектры фантома с Ce6, C_{Ce6}=2 мг/кг; (в) распределение интенсивностей диффузно рассеянного лазерного излучения и флуоресценции PpIX, λ_{exc} =635 нм; (г) распределение интенсивностей диффузно рассеянного лазерного излучения u флуоресценции $\lambda_{exc} = 660$ *Ce6*. нм: (д) распределение процессе лазерного индексов флуоресценции в облучения с *PpIX*, λ_{exc} =635 нм; (е) распределение индексов оптических фантомов флуоресценции в процессе лазерного облучения оптических фантомов с Себ, λ_{exc} =660 нм. Время экспозиции 50 мс. Временной интервал регистрации спектров 5 с.

Рис. 3. Спектроскопическая диагностика опухолей с регистрацией флуоресценции *PpIX и Ce6 в диапазонах 665–710 нм и 725–800 нм: (а) до ФДТ; (б) после ФДТ.*

В § 4 представлены результаты флуоресцентной навигации опухоли с регистрацией флуоресценции PpIX и Ce6 в красном (665–710 нм) и БИК (725–800 нм) диапазонах, что позволило достоверно выявить зоны опухоли с накоплением ФС (Рис. 3). Фотобличинг ФС в процессе фотодинамического воздействия

контролировался за счет регистрации в одном динамическом диапазоне диффузно рассеянного лазерного излучения и флуоресценции в БИК-диапазоне (Рис. 4).

Рис. 4. Спектроскопический контроль фототераностики опухоли в процессе лазерного облучения: (а) регистрируемая спектральная информация; (б) распределение индексов флуоресценции опухоли. Плотность мощности лазерного излучения 365 мВт/см².

Полученные в процессе лазерно-индуцированной ФДТ распределения индексов флуоресценции были аппроксимированы двухэкспоненциальной функцией:

 $IF(t) = A_1 \cdot e^{-k_1 t} + A_2 \cdot e^{-k_2 t} + \text{const},$ (3)

где IF(t) – индексы флуоресценции в процессе облучения; A_1 , A_2 – коэффициенты аппроксимации; t – время облучения; k_1 , k_2 – скорости фотобличинга ФС. В длинноволновом диапазоне преобладание рассеяния над поглощением позволяет анализировать структурные особенности биологических тканей. Было выявлено, что контроль интенсивностей диффузно рассеянного лазерного излучения и флуоресценции ФС позволяет определять момент тромбирования сосудистой системы тканей в зоне облучения (Рис. 5).

Рис. 5. Распределение интенсивностей диффузно рассеянного лазерного излучения (650–670 нм) и флуоресценции Себ (725–800 нм) и результаты видео-капилляроскопии опухоли до и после ФДТ.

Так как Себ преимущественно локализован в сосудистой системе опухоли, при ФДТ повреждается эндотелий кровеносных сосудов, что приводит к запуску процесса их тромбирования, особенно артериальной части капилляров. В тромбогенезе ведущую роль играют тромбоциты, которые прилипают к месту повреждения и вместе с лейкоцитами образуют так называемый «белый тромб», где позднее откладывается фибрин, в нитях которого застревают эритроциты и образуется «красный тромб» [6]. В процессе тромбирования за счет ограничения доступа оксигемоглобина и увеличения плотности тканей увеличивается интенсивность диффузно рассеянного лазерного излучения. Тромбирование сосудистой системы тканей при ΦДТ c Ce6 также было подтверждено результатами видеокапилляроскопии (Рис. 5).

В § 5 представлен спектроскопический метод комбинированного контроля эффективности лазерно-индуцированного фотодинамического воздействия, который позволяет одновременно оценить оксигенацию гемоглобина, изменение интенсивности диффузно рассеянного лазерного излучения и флуоресценции ФС в процессе лазерного облучения (Рис. 6).

Рис. 6. Спектроскопический комбинированный контроль эффективности лазерноиндуцированного фотодинамического воздействия: (а) диффузно отраженные белый свет и лазерное излучение, а также флуоресценция Себ в БИК-диапазоне; (б) поглощение гемоглобина; (в) интраоперационный процесс фототераностики опухоли с комбинированным спектроскопическим контролем.

Данный метод подразумевает применение одного источника лазерного излучения ($\lambda = 660\pm 5$ нм) для спектроскопической диагностики и лазерноиндуцированной ФДТ. В § 6 представлены результаты сравнительного исследования спектроскопического комбинированного контроля ФДТ с применением оптических фантомов, содержащих эритроциты и Себ. После начала лазерного облучения на 20временное гиперосмотическое разбухание эритроцитов. С 25 с наблюдалось увеличением концентрации Себ наблюдалось увеличение интенсивности диффузно лазерного излучения вследствие прошедшего разрушения эритроцитов И, соответственно, уменьшения концентрации рассеивающих центров в среде. При лазерном облучении наблюдался двухэкспоненциальный процесс уменьшения интенсивности флуоресценции Себ (Рис. 7). В процессе ФДТ наблюдалось

разрушение мембран эритроцитов и дальнейшее уменьшение интенсивности флуоресценции Себ, однако в данном случае скорость фотобличинга Себ в среднем уменьшалась в 14 раз. Разрушающее действие ¹О₂ преимущественно было направлено на мембраны эритроцитов.

Рис. 7. Распределения интенсивностей диффузного пропускания лазерного излучения (λ_{exc} = 660 нм), флуоресценции Себ (725–800 нм) и оксигенации гемоглобина в процессе лазерного облучения. Время экспозиции 30 мс. Временной интервал регистрации спектров 5 с. Плотность мощности лазерного излучения 173 мВт/см². Плотность мощности широкополосного белого света 11±3 мВт/см².

В §7 представлены результаты интраоперационного спектроскопического комбинированного контроля лазерно-индуцированной ФДТ опухолей кожи. По результатам спектроскопической диагностики отмечалась селективность накопления Себ в опухоли по сравнению с нормальными тканями. При этом выделялись случаи с высоким уровнем накопления Себ (Рис. 8а,в) и низким уровнем накопления Себ (Рис. 86,г) в опухоли. Низкий уровень накопления Себ преимущественно наблюдался пациентов, которым проводилась повторная процедура ФДТ. Ha Рис. 8 y комбинированного представлены результаты спектроскопического контроля фотодинамического воздействия в процессе лазерного облучения опухоли.

В случае с высоким уровнем накопления Себ в процессе ФДТ интенсивность диффузно рассеянного лазерного излучения в определенный момент времени начинала увеличиваться, а скорость фотобличинга ФС уменьшаться в связи с полным тромбированием сосудистой системы в облучаемой зоне. Пока к опухоли поступала кровь, наблюдался быстрый фотобличинг Себ за счет притока оксигемоглобина, что подтверждалось результатами оценки кровенаполненности. В случае с низким накоплением Себ уровень оксигенации гемоглобина в начале облучения оставался на одном уровне. При этом интенсивности диффузно рассеянного лазерного излучения и кровенаполненности уменьшались, что может быть связано с временным сосудистым сужением и, вследствие этого, с «просветлением» облучаемых биологических тканей.

Рис. 8. Спектроскопический комбинированный контроль фототераностики опухоли: (а,б) спектроскопическая диагностика до ФДТ, λ_{exc} =632,8 нм; (в,г) распределения интенсивностей диффузно рассеянного лазерного излучения (650–670 нм). Ce6 (725-800 флуоресиениии нм). *vровня* оксигенации гемоглобина u кровенаполненности опухоли (520–590 нм) в процессе лазерного облучения. Время экспозиции 20 мс. Временной интервал регистрации спектров 5 с.

Четвертая глава посвящена разработке устройства для ИК-визуализации кровеносных сосудов методом регистрации обратно рассеянного лазерного излучения и оценки состояния сосудистой системы биологических тканей [АЗ]. В § 1 описаны существующие методы ИК-визуализации кровеносных сосудов и предпосылки создания разрабатываемого устройства. Разница в поглощении и рассеянии в БИК-диапазоне между эритроцитами, преимущественно локализованными в крупных кровеносных сосудах, и окружающими тканями дает возможность регистрировать изображения поглощения подкожных кровеносных сосудов в диффузно рассеянном назад свете [7]. В § 2 представлены схема работы и внешний вид системы визуализации кровеносных сосудов методом регистрации и анализа обратно рассеянного лазерного излучения (Рис. 9).

Лазерное излучение доставляется через 20 полимерных оптических волокон диаметром 500 мкм с апертурой NA=0,22 в режиме контакта «оптическое волокно– кожа». ИК-камера регистрирует обратно рассеянное лазерное излучение, и на экране монитора отображаются «теневые» изображения кровеносных сосудов [П4].

В § 3 описывается метод определения оптимальных длин волн для ИКвизуализации кровеносных сосудов в диапазоне 700–860 нм методом регистрации обратно рассеянного лазерного излучения. На границе кровеносного сосуда с окружающей тканью наблюдается скачок яркости, а скорость данного скачка

характеризует степень размытия/резкости границы. Для оценки резкости границ кровеносных сосудов профиль яркости аппроксимировался сигмоидальной функцией с дальнейшим дифференцированием:

$$\sigma(x) = \frac{L}{1 + e^{-k(x - x_0)}} - A \Longrightarrow \frac{d\sigma}{dx} = Lk \frac{e^{-k(x - x_0)}}{\left(1 + e^{-k(x - x_0)}\right)^2},\tag{4}$$

где L, x_0 , k, A – параметры, которые задают размах по оси ординат, абсциссу точки перегиба, крутизну кривой и сдвиг по оси ординат соответственно. В § 4 анализируется оптимальный диапазон длин волн для ИК-визуализации подкожных кровеносных сосудов методом регистрации и анализа обратно рассеянного лазерного излучения. Наибольшая контрастность кровеносных сосудов наблюдалась в диапазоне длин волн 700–800 нм, а наибольшее значение коэффициента резкости на длине волны 760 нм.

Рис. 9. Внешний вид и схема работы устройства для визуализации кровеносных сосудов с примером регистрируемых изображений: 1 – ИК камера; 2 – объектив; 3 – оптические волокна; 4 – кожа; 5 – зондирующее лазерное излучение; 6 – кровеносные сосуды.

В § 5 представлены результаты моделирования методом Монте-Карло распространения лазерного излучения (λ = 800 нм) в трехслойной модели кожи человека. При расположении оптических волокон на расстоянии друг от друга более 28,5 мм глубина зондирования составляла более 6 мм. Зависимость глубины зондирования излучением была аппроксимирована функцией

$$\mathbf{v}(r) = a - b \cdot \ln(r + c), \tag{5}$$

где r – расстояние между оптическими волокнами; a, b и c – коэффициенты пропорциональности. В § 6 проводится сравнительное применение ИК-визуализации подкожных вен человека методом диффузно рассеянного лазерного излучения и методом прямого освещения поверхности с регистрацией отраженного сигнала. Предложенный метод визуализации с волоконно-оптическим способом доставки обеспечивает получение более высококонтрастных изображений кровеносных сосудов (Рис. 10).

В § 7 приведены результаты ИК-визуализации опухоли до и после ФДТ с применением Себ. После ФДТ границы опухоли становятся менее контрастными в сравнении с изображениями до ФДТ, что обусловлено тромбированием кровеносных сосудов в зоне лазерного облучения, преимущественно в артериальной части капилляров (Рис. 11). В данном случае по результатам спектроскопической диагностики в процессе ФДТ также наблюдалось ограничение циркуляции крови в тканях, что было подтверждено результатами оценки уровня оксигенации гемоглобина и кровенаполненности, которые уменьшались после ФДТ.

Рис. 10. ИК-визуализация одних и зон при различных mex же доставки способах лазерного излучения (λ=800 нм): (а) в контакте оптических волокон с кожей по периметру исследуемой зоны: (б) методом прямого освещения поверхности; (B) усредненные профили яркости выделенных зон.

Рис. 11. Изображения опухоли кожи, полученные в цветном режиме и методом регистрации обратно рассеянного лазерного излучения (λ =785 нм) до и после ФДТ.

Пятая глава посвящена разработке метода предварительного лазерного облучения опухоли с применением Себ, позволяющего неинвазивно локально увеличить концентрацию ФС в тканях опухоли [A4]. Предварительное воздействие подразумевало облучение ткани лазерным излучением с $\lambda = 660\pm 5$ нм и плотностью энергии 10–20 Дж/см². В § 1 представлены результаты флуоресцентной оценки накопления и степени фотобличинга Себ в тканях опухоли и границы опухоли (~5 мм). Исследование проводилось на 19 пациентах с опухолями кожи. В большинстве случаев (65%) значения индексов флуоресценции в опухоли после предварительного лазерного облучения превышали значения до облучения, тогда как в тканях границы опухоли в большинстве случаев (58%) наблюдалось уменьшение индексов флуоресценции (p < 0.01, ранговый *W*-критерий Вилкоксона). В § 2

представлены результаты оценки концентрационного распределения Себ в опухоли и на границе опухоли до и после предварительного лазерного облучения. Медиана выборки концентраций Себ до ФДТ в норме составляла 0,07 мг/кг с интерквартильным размахом (interquartile range, IQR) 0,03–0,39 мг/кг, в опухоли 0,71 мг/кг (IQR=0,18–1,38 мг/кг), а в тканях границы опухоли 0,26 мг/кг (IQR=0,07–0,89 мг/кг). После предварительного облучения с плотностью энергии излучения 10–20 Дж/см² медианное значение концентрации Себ в опухоли составило 0,92 мг/кг (IQR=0,23–2,35 мг/кг), т.е. наблюдалось увеличение концентрации Себ в 1,3 раза.

В § 3 представлены результаты конфокальной микроскопической оценки распределения Себ в опухоли до и после предварительного лазерного облучения. Наибольшая интенсивность флуоресценции Себ до ФДТ наблюдалась в области кровеносных сосудов, однако после низкоинтенсивного лазерного облучения отмечалось тромбирование кровеносных сосудов, а интенсивная флуоресценция Себ обнаруживалась и в тканях паренхимы опухоли (Рис. 12).

Рис. 12. Микроскопические флуоресцентные изображения тканей опухоли и спектры флуоресценции спустя 3 часа после внутривенного введения Себ (область кровеносного сосуда выделена синим; область паренхимы опухоли выделена красным): (а) до ФДТ; (б) после ФДТ с плотностью мощности 310 мВт/см² и плотностью энергии 10 Дж/см².

В § 4 приведены результаты спектроскопического исследования уровня оксигенации гемоглобина в опухоли с Себ в процессе предварительного лазерного облучения. При лазерном облучении с плотностью энергии излучения 10 Дж/см² уровень оксигенации гемоглобина снижался в опухоли на 27 % и на 25 % в тканях

границы опухоли (Рис. 13). При дальнейшем предварительном лазерном облучении наблюдалось увеличение уровня оксигенации гемоглобина и достижение значений, которые наблюдались до ФДТ. После основного лазерного облучения, т.е. после непрерывной ФДТ с поверхностной плотностью мощности 700 мВт/см² и плотностью энергии 100 Дж/см², наблюдалось тромбирование кровеносных сосудов. Таким образом, предварительное лазерное облучение позволяет избежать полного тромбирования кровеносных сосудов, что обеспечивает поступление ФС и кислорода, содержащихся в крови, в облучаемые ткани в процессе светового воздействия и, тем самым, увеличивает эффективность ФДТ.

Рис. 13. Спектроскопический контроль оксигенации гемоглобина в опухоли и границе опухоли: (а,в) спектры коэффициента ослабления света в диапазоне длин волн, в пределах которого рассчитывалась оксигенация гемоглобина; (б,г) уровень оксигенации гемоглобина.

В § 5 приведены результаты оценки клинической эффективности применения предварительного лазерного облучения опухоли с внутривенным капельным введением Себ. После 1–2 процедур ФДТ в 90 % случаев отмечалась полная регрессия опухоли с формированием небольшого рубца, что улучшило качество жизни пациентов. По результатам гистологического исследования фрагментов кожи спустя 1 месяц после ФДТ наблюдалась гиперплазия эпидермиса с выраженным фиброзом дермы и периваскулярными лимфоидными инфильтратами (Рис. 14).

С применением разработанных методов и устройств, обеспечивающих флуоресцентную навигацию распределения ФС, контроль изменения интенсивности флуоресценции ФС или оксигенации гемоглобина в процессе лазерного облучения,

было проведено более 350 процедур ФДТ. Применение данных разработок обеспечивает контроль на всех этапах процедуры ФДТ.

Рис. 14. Изображения новообразований пациентов с раком кожи: (a) до ФДТ; (б) спустя 1 месяц после ФДТ.

В Заключении и выводах сформулированы основные результаты работы.

1. Разработанный метод спектроскопического контроля процесса лазерного облучения опухолей с применением PpIX и Ce6 с регистрацией длинноволнового плеча флуоресценции в диапазоне длин волн 725-800 нм позволил провести интраоперационную флуоресцентную навигацию распределения ФС. Метод включает применение одного источника лазерного излучения, который одновременно используется для ФД и ФДТ, что обеспечивает проведение спектроскопического контроля изменения интенсивности флуоресценции ΦC В процессе фотодинамического воздействия. Метод в режиме реального времени позволяет контролировать скорости процессов фотобличинга ФС и тромбирования кровеносных сосудов.

2. Разработан метод спектроскопического определения оптимального времени продолжительности светового облучения непосредственно в процессе лазерноиндуцированного фотодинамического воздействия за счет комбинированного контроля изменений интенсивности флуоресценции Себ, уровня оксигенации

гемоглобина и диффузно рассеянного лазерного излучения ($\lambda = 660 \pm 5$ нм), характеризующего оптические свойства биологических тканей. Метод обеспечивает в режиме реального времени регистрацию спектроскопических сигналов (с экспозицией 20–50 мс и временным интервалом регистрации спектров 3–5 с) с оценкой основных параметров биологических тканей, отвечающих за эффективность фотодинамического воздействия.

3. Разработано устройство для ИК-визуализации приповерхностных вен человека методом регистрации и анализа обратно рассеянного лазерного излучения с волоконно-оптическим способом доставки света к области исследования. Устройство позволяет визуализировать подкожные вены и оценить изменения кровенаполненности биологических тканей, содержащих ФС, при фотодинамическом воздействии. Установлено, что наибольшая контрастность вен при визуализации методом регистрации диффузно рассеянного лазерного излучения в диапазоне 700–860 нм наблюдается на длине волны 760 нм.

4. Выявлены изменения внутритканевого распределения Себ в опухолях кожи с внутривенным способом введения ФС в процессе предварительного лазерного облучения с плотностью мощности 130–310 мВт/см² и шагом плотности энергии 10 Дж/см². Установлено, что предварительное низкоинтенсивное лазерное облучение опухоли увеличивает медианную концентрацию Себ в тканях, что повышает эффективность ФДТ.

Разработанные методы и устройства апробированы и применяются в Институте кластерной онкологии им. Л. Л. Левшина Первого МГМУ им. И.М. Сеченова.

Список основных публикаций по теме диссертации

A1 Efendiev K.T., Alekseeva P.M., Shiryaev A.A. et al. Comparative investigation of 5aminolevulinic acid and hexyl aminolevulinate-mediated photodynamic diagnostics and therapy of cervical dysplasia and vulvar leukoplakia // Laser Physics Letters. -2021. -T. 18. - No. 6. - C. 065601.

A2 Efendiev K., Alekseeva P., Shiryaev A. et al. Near-infrared phototheranostics of tumors with protoporphyrin IX and chlorin e6 photosensitizers // Photodiagnosis and Photodynamic Therapy. – 2023. – T. 42. – C. 103566.

A3 Efendiev K., Grachev P., Moskalev A. et al. Non-invasive high-contrast infrared imaging of blood vessels in biological tissues by the backscattered laser radiation method // Infrared Physics and Technology. -2020. - T. 111. - C. 103562.

A4 **Efendiev K.T.,** Alekseeva P.M., Shiryaev A.A. et al. Preliminary low-dose photodynamic exposure to skin cancer with chlorin e6 photosensitizer // Photodiagnosis and Photodynamic Therapy. – 2022. – T. 38. – C. 102894.

A5 Alekseeva P.M., **Efendiev K.T.**, Savelieva T.A. et al. Optimization of energy parameters for laser-induced PDT of cervical tissues using numerical simulation and fluorescent monitoring //Laser Physics. $-2023. - T. 33. - N_{\odot}. 6. - C. 065602.$

A6 Shiryaev A.A., **Efendiev K.T.**, Kornev D.O. et al. Photodynamic therapy of classic Kaposi's sarcoma with video-fluorescence control // Photodiagnosis and Photodynamic Therapy. – 2021. – T. 35. – C. 102378.

A7 Kozlikina E.I., **Efendiev K.T.**, Grigoriev A.Y. et al. A Pilot Study of Fluorescence-Guided Resection of Pituitary Adenomas with Chlorin e6 Photosensitizer // Bioengineering. $-2022. - T. 9. - N_{\odot}. 2. - C. 52.$

A8 Alekseeva P.M., **Efendiev K.T.** et al. Sublingual administration of 5-aminolevulinic acid for laser-induced photodiagnostics and photodynamic therapy of oral cavity and larynx cancers // Photodiagnosis and Photodynamic Therapy. -2021. - T. 34. - C. 102289.

A9 Alekseeva P.M., **Efendiev K.T.**, Loshchenov M.V. et al. Combined spectral- and video-fluorescent diagnostics of cervical neoplasms for photodynamic therapy // Laser Physics Letters. $-2020. - T. 17. - N_{\odot}. 10. - C. 105602.$

A10 Kustov D.M., Kozlikina E.I., **Efendiev K.T.** et al. Laser-induced fluorescent visualization and photodynamic therapy in surgical treatment of glial brain tumors // Biomedical Optics Express. $-2021. - T. 12. - N_{\odot}. 3. - C. 1761-1773.$

A11 Shiryaev A.A., Minaev V.V., Stolyarov V.I., **Efendiev K.T.** et al. A method for intra-percardial PDT for malignant mesothelioma // Photodiagnosis and Photodynamic Therapy. – 2022. – T. 38. – C. 102799.

A12 Gilyadova A., Ishchenko A., Ishenko A., Samoilova S., Shiryaev A., Kiseleva A., Petukhova N., **Efendiev K.** et al. Analysis of the Results of Severe Intraepithelial Squamous Cell Lesions and Preinvasive Cervical Cancer Phototheranostics in Women of Reproductive Age // Biomedicines. -2022. -T. 10. - N. 10. - C. 2521.

А13 Гилядова А.В., Романко Ю.С., Ищенко А.А., Эфендиев К.Т. и др. Фотодинамическая терапия предраковых заболеваний и рака шейки матки (обзор литературы) //Biomedical Photonics. – 2022. – Т. 10. – №. 4. – С. 59-67.

A14 Yakovlev D., Shiryaev A., Farrakhova D., Savelieva T., **Efendiev K.** et al. Comparison of the Capabilities of Spectroscopic and Quantitative Video Analysis of Fluorescence for the Diagnosis and Photodynamic Therapy Control of Cholangiocellular Cancer // Photonics. – MDPI, 2022. – T. 9. – N_{\odot} . 2. – C. 65.

A15 Gilyadova A., Ishchenko A., Shiryaev A., Alekseeva P., Efendiev K. et al. Phototheranostics of cervical neoplasms with chlorin e6 photosensitizer // Cancers. -2022. $-T. 14. - N_{\odot}. 1. - C. 211$.

А16 Гилядова А.В., Ищенко А.А., Аполихина И.А., Эфендиев К.Т. и др. Возможности применения фотодинамической терапии в лечении предраковых заболеваний и рака шейки матки // Акушерство и гинекология. 2022. – № 5. – С. 35-42.

А17 Козликина Е.И., Эфендиев К.Т., Трифонов В.В. и др. Разработка и клиническая апробация баллонного устройства для флуоресцентной диагностики и контролируемой фотодинамической терапии глиальных опухолей головного мозга // Лазерная медицина. – 2021. – Т. 25. – №. 3S. – С. 32.

A18 Morozova N.B., Pavlova M.A., Plyutinskaya A.D., Pankratov A.A., **Efendiev K.T.** et al. Photodiagnosis and photodynamic effects of bacteriochlorin-naphthalimide conjugates on tumor cells and mouse model // Journal of Photochemistry and Photobiology B: Biology. – 2021. – T. 223. – C. 112294.

A19 Kozlikina E.I., Pominova D.V., Ryabova A.V., **Efendiev K.T.** et al. Spectroscopic measurement of methylene blue distribution in organs and tissues of hamadryas baboons during oral administration // Photonics. – MDPI, 2021. – T. 8. – N_{2} . 8. – C. 294.

А20 Баранов А.В., Корнев А.И., Борискин А.А., Мустафаев Р.Д., Дербенев В.А., Горин Д.С., Эфендиев К.Т. Накопление фотосенсибилизатора в слизистой оболочке мочевого пузыря при хроническом цистите // Лазерная медицина. – 2021. – Т. 24. – №. 2-3. – С. 9-14.

A21 Yakovlev D.V., Farrakhova D.S., Shiryaev A.A., **Efendiev K.T.** et al. New approaches to diagnostics and treatment of cholangiocellular cancer based on photonics methods // Frontiers of Optoelectronics. -2020. - T. 13. - C. 352-359.

A22 Loshchenov M., Levkin V., Kalyagina N., Linkov K., Kharnas S., **Efendiev K.** et al. Laser-induced fluorescence diagnosis of stomach tumor // Lasers in Medical Science. – 2020. – T. 35. – C. 1721-1728.

A23 Shiryaev A., Alekseeva P., **Efendiev K.** et al. Investigated spectral-fluorescent properties of endogenous porphyrins of the wild boar hepatobiliary system optimize the diagnostics and treatment of cholangiocarcinoma with FD and PDT // Optical Engineering. $-2020. - T. 59. - N_{\odot}. 6. - C. 061615-061615.$

A24 Farrakhova D., Shiryaev A., Yakovlev D., **Efendiev K**. et al. Trials of a fluorescent endoscopic video system for diagnosis and treatment of the head and neck cancer //Journal of Clinical Medicine. $-2019. - T. 8. - N_{\odot}. 12. - C. 2229.$

Патенты

П1 Патент № 2767264 С1 Российская Федерация. Способ внутрипротоковой фототераностики холангиоцеллюлярного рака. Д.В. Яковлев, Д.С. Фаррахова, П.В. Грачев, К.Т. Эфендиев [и др.].

П2 Патент № 2782643 С1 Российская Федерация. Способ фотодинамической терапии новообразований шейки матки и вульвы под контролем совместной видео- и спектрально-флуоресцентной диагностики с применением фотосенсибилизаторов хлоринового ряда. П.М. Алексеева, **К.Т. Эфендиев**, М.В. Лощенов [и др.].

ПЗ Патент № 2777486 С1 Российская Федерация. Устройство для проведения фотодинамической терапии с возможностью одновременного спектральнофлуоресцентного контроля фотобличинга фотосенсибилизатора. К.Т. Эфендиев, П.М. Алексеева, А.А. Ширяев, В.Б. Лощенов.

П4 Патент на полезную модель № 204680 U1 Российская Федерация. Устройство для контактной инфракрасной визуализации кровеносных сосудов методом обратно рассеянного лазерного излучения. **К.Т. Эфендиев**, П.В. Грачев, В.Б. Лощенов.

Список цитируемой литературы

1. Pogue B. W., Patterson M. S. Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry // Journal of Biomedical Optics. $-2006. - T. 11. - N_{\text{O}} 4. - C. 041102-041102-16.$

2. Croce A. C., Bottiroli G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis //European Journal of Histochemistry: EJH. -2014. - T. 58. $- N_{0}$. 4.

3. Ruiz A. J. et al. Effective fluence and dose at skin depth of daylight and lamp sources for PpIX-based photodynamic therapy // Photodiagnosis and Photodynamic Therapy. – 2023. – C. 103260.

4. Савельева, Т. А. Комбинированный спектроскопический метод исследования сильнорассеивающих биологических сред: специальность 01.04.21–Лазерная физика: диссертация на соискание ученой степени кандидата физико-математических наук. – Москва, ИОФ РАН, 2013. – 118 с.

5. Рябова А. В., Стратонников А. А., Лощенов В. Б. Лазерно-спектроскопический метод оценки эффективности фотосенсибилизаторов в биологических средах // Квантовая электроника. – 2006. – Т. 36. – №. 6. – С. 562-568.

6. Порядин Г.В. Патофизиология гемореологии и микроциркуляции РГМУ.–2007.

7. Jacques S. L. Optical properties of biological tissues: a review //Physics in Medicine & Biology. – 2013. – T. 58. – №. 11. – C. R37.